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Abstract. The goal of magnetic observatories is to measure and provide vector magnetic field in a geodetic coordinate 5 

system. For that purpose, instrument setup and calibration are crucial. In particular, scale factor and orientation of vector 

magnetometer may affect the magnetic field measurement. We remember here the concept of baseline and demonstrate that 

they are primordial for data quality control. We show how they can highlight a possible calibration error. We also provide a 

calibration method based on high frequency absolute measurement. This method determines a transformation matrix for 

correcting variometer data suffering from scale factor and orientation errors. We finally present a practical case whose 10 

recovered data have been successfully compared to those coming from a reference magnetometer. 

1 Introduction 

Most of magnetic observatories are built according a standardized or universally adopted scheme (Jankowski and 

Sucksdorff, 1996) including at least a set of 3 major instruments. The different data streams are combined to build a unique 

vector magnetic field data. The first device is a vector magnetometer, also called variometer, which records variations of the 15 

magnetic field components at regular interval (e.g. at 1Hz). However this is not an absolute instrument. In particular, 

reference directions, vertical and geographical north, are not available. They usually work as near zero sensors so that an 

offset must be added to the relative value of each component in order to adjust them and therefore determine the complete 

vector. Those offsets or “baselines” should be as constant as possible but may drift more or less depending on the 

environment stability and device quality. For instance, thermal variations may affect the pillar stability. A baseline can also 20 

suffer from sudden variation due to instrumental effect after, e.g. (unwanted) motion or change in the surrounding 

environment (Fig. 1). A regular determination of the baselines is thus necessary to take their change into account. This is the 

main goal of the well-known “absolute measurements” that are realized by the two other instrument.  

 

First, a scalar magnetometer, records the intensity of the field. Most of the time, a proton precession or an overhauser 25 

magnetometer is used for this task. They exploit the fact that protons precess at a frequency proportional to the magnetic 

field according to: 

𝜔𝑝𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛 = 𝛾  ‖𝐵⃗ ‖,           (1) 
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Where 𝛾, the gyromagnetic ratio, is a fundamental physical constant(Mohr et al., 2014). Therefore this magnetometer can be 

considered as an absolute instrument.  

 

The last instrument serves to determine the magnetic field orientation according to reference direction. Magnetic declination 

is the angle between True-North and magnetic field in a horizontal plane and inclination is the angle between the horizontal 5 

plane and the field. In a conventional observatory, a DIFlux (non-magnetic theodolite embedding single-axis magnetic 

sensor) is manipulated by an observer according a particular procedure (Kerridge, 1988) taking about 15 min per 

measurement. This instrument is also considered as absolute because angles are measured according to geodetic reference 

directions. Due to this manpower dependency, the frequency of absolute measurements does not exceed once a day (St 

Louis, 2011). However, new automatic devices such as AutoDIF (Gonsette et al., 2012) close the loop by automatizing the 10 

DIFlux measurements procedure. Moreover, AutoDIF is able to increase the frequency of baseline determination by 

performing several measurements per day.  

 

After collecting synchronized data from the three instruments, baselines are computed by using the relation, e.g. for 

Cartesian coordinate system: 15 

(

𝑋0(𝑡)

𝑌0(𝑡)

𝑍0(𝑡)
) = (

𝑋(𝑡)

𝑌(𝑡)

𝑍(𝑡)
) − (

𝛿𝑋(𝑡)

𝛿𝑌(𝑡)

𝛿𝑍(𝑡)
),          (2) 

 

Where X pointing the geographic North, Y eastward and Z downward are the three conventional Cartesian components of 

the field. The “0” index refers to the baseline while 𝛿 refers to the variometer data. Spherical and cylindrical configurations 

are also possible (Rasson, 2005). A baseline is then applied on these measurements using various methods such as least-20 

squared polynomial or spline approximation. Finally, the vector field is constructed by adding the variometer values to the 

adopted baselines.  

 

Equation (2) supposes a variometer properly setup with Z axis vertical and X axis pointing toward geographic north. The 

scale factor of each component is also supposed perfect. A correct orientation is usually ensured by paying attention during 25 

the setup step but its stability in time is not always evident. Permafrost areas are examples of drifting regions (Eckstaller et 

al., 2007) where variometer orientation is not guarantee. If the orthogonality errors are neglected, the problem of calibration 

can be expressed as followed: 

[
𝑋
𝑌
𝑍
] = 𝑅𝑧(𝛾)𝑅𝑦(𝛽)𝑅𝑥(𝛼) [

𝑘1 0 0
0 𝑘2 0
0 0 𝑘3

] [
𝑈
𝑉
𝑊

] + [

𝑋0

𝑌0

𝑍0

],        (3) 

Where the 𝑅𝑥,𝑦,𝑧are an elementary rotation matrix and the 𝑘𝑖 are the scale factors for each component. U, V and W are the 30 

three variometer output in the sensors reference frame. Calibration procedures can be divided in two categories. On one 
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hand, the scalar calibration compares scalar values computed from vector magnetometer to absolute scalar values. This 

technique is exploited by satellites because vector reference field is not available but instruments are orbiting around the 

earth (Olsen et al., 2003). On the other hand, the vector calibration directly compares vector magnetometer measurements to 

reference vector value (Marusenkov et al., 2011). This requires a second variometer already calibrated. The method 

presented in this paper is relatively close to this last. 5 

2 Calibration error detection 

Before solving the calibration problem, it could be useful to give some clues for detecting required adjustments. Indeed, it is 

difficult, when only examining definitive data, to detect a few nanotesla errors in daily amplitude. Direct comparison with 

other observatories requires them to be close enough while many observatories cannot afford to buy an auxiliary variometer. 

Fortunately, baselines are useful tools for checking data. As described below, they are affected by calibration errors and if 10 

they are measured with a sufficient high frequency, particular errors can be highlighted. 

2.1 Scale factor error 

Let us consider an observatory working in Cartesian coordinate system variometer such as a LEMI-025. Each sensor 

converts a magnetic signal expressed in nanoTesla (nT) into a voltage itself digitized to give the signal in a convenient 

format. A scale factor in then used to convert true signal into digitized signal: 15 

𝛿𝑋𝑑𝑖𝑔𝑖𝑡𝑎𝑙 = 𝑘𝑛𝑇

𝑉
 
. 𝛿𝑋𝑣𝑜𝑙𝑡𝑎𝑔𝑒 . 𝑘 𝑉

𝑛𝑇

 . 𝛿𝑋𝑟𝑒𝑎𝑙 ,         (4) 

 

Or, straightforward with: 

𝑘𝑋 = 𝑘𝑛𝑇

𝑉
 
. 𝛿𝑋𝑣𝑜𝑙𝑡𝑎𝑔𝑒 . 𝑘 𝑉

𝑛𝑇

,           (5) 

 20 

Where 𝑘𝑋 is a scale factor as close to 1 as possible. 

 

Supposing now a difference between digital and real variation of a component resulting from a badly calibrated scale factor, 

the baseline measurement will be affected by this error: 

(

𝑋0
∗(𝑡)

𝑌0
∗(𝑡)

𝑍0
∗(𝑡)

) = (

𝑋(𝑡)

𝑌(𝑡)

𝑍(𝑡)
) − (

𝑘𝑋

𝑘𝑌

𝑘𝑍

)(

𝛿𝑋(𝑡)

𝛿𝑌(𝑡)

𝛿𝑍(𝑡)
),         (6) 25 

(

𝑋0
∗(𝑡)

𝑌0
∗(𝑡)

𝑍0
∗(𝑡)

) = (

𝑋0(𝑡)

𝑌0(𝑡)

𝑍0(𝑡)
) + (

(1 − 𝑘𝑋)

(1 − 𝑘𝑌)

(1 − 𝑘𝑍)
)(

𝛿𝑋(𝑡)

𝛿𝑌(𝑡)

𝛿𝑍(𝑡)
),        (7) 
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The baseline varies then with respect to its corresponding variometer component value meaning that a correlation exists 

between both.  

2.2 Orientation error 

 Now, let us consider once again the same XYZ variometer but this time presenting a default in orientation. That could be 

due, for instance, to a levelling error caused by a bad setup or an unstable basement and/or an X axis pointing to any other 5 

direction than the conventional one. The given components are affected by this orientation error and do not correspond to the 

expected ones. This is the reason why instruments such as ASMO (Alldregde, 1960) or any other 3-axes magnetometers will 

never be considered as full magnetic observatory. 

 

J.Rasson treated the simplified case of a rotation 𝜃 around the Z-axis (Rasson 2005). In that particular case, the relative real 10 

values are given by: 

(

𝛿𝑋(𝑡)

𝛿𝑌(𝑡)

𝛿𝑍(𝑡)
) = (

cos(𝜃) − sin(𝜃) 0

sin(𝜃) cos(𝜃) 0
0 0 1

)(

𝛿𝑈(𝑡)
𝛿𝑉(𝑡)

𝛿𝑊(𝑡)
),        (8) 

 

The 𝑋0 baseline, for instance, should be computed as: 

𝑋0 = 𝑋(𝑡) − 𝑐𝑜𝑠 (𝜃)𝛿𝑈(𝑡) + sin(𝜃)𝛿𝑉(𝑡),         (9) 15 

 

If no correction is applied, the observed baseline get the following form: 

𝑋0
∗ = 𝑋0 + (1 − cos(𝜃)) 𝛿𝑈(𝑡) − sin(𝜃)𝛿𝑉(𝑡),        (10) 

 

In this case, a correlation exists between the baseline and another relative component.  20 

 

The general case is much more complex in particular if the orientation error is combined with a significant scale factor error. 

Indeed, the term (1 − cos(𝜃))  in Eq. (10) may be interpreted ether as a scale factor error or as an orientation error.  

3 Calibration process 

Absolute measurements, before giving baselines, provide absolute or spot value of the magnetic field. When performed with 25 

a sufficient high frequency (e.g. once per hour), the generated magnetogram can be compared with the variometer value. 

Therefore a vectorial calibration can be done as if a reference variometer was available.  

 

General case, including orthogonality errors can be expressed by rewriting Eq. (3) as followed: 
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[
𝑋
𝑌
𝑍
] = [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] [
𝑈
𝑉
𝑊

] + [

𝑋0

𝑌0

𝑍0

],          (11) 

For each component, the problem simply consists of solving a linear system where a time series spot values and the 

synchronized three variometer components are the input. Equation (12) gives the system to solve for the X component 

(others are similar):  

[𝑋] = [𝑈 𝑉 𝑊 1] [

𝑎
𝑏
𝑐
𝑋0

],          (12) 5 

Because each component is treated separately, scale factor, orientation and non-orthogonality are taken into account. The 

three coefficients can be injected in Eq. (11). Then, baselines and definitive data are computed according to conventional 

way. 

4 Case study 

A variometer LEMI-025 has been installed in Dourbes magnetic observatory. The device has voluntary been setup in a non-10 

conventional orientation as shown in Fig. 3. The levelling and orientation default have been strongly exaggerated compared 

to those encountered in conventional observatories but if we consider possible future automatic deployment using systems 

such as GyroDIF (Gonsette et al., 2017), the orientation could be completely random. An AutoDIF installed in the Dourbes 

absolute house has been used for performing absolute measurements because of its high frequency measurement capability. 

One measurement every 30 min have been made during four days 15 

 

Before processing, the baseline computation clearly highlights the setup error as shown in Fig. 4. Actually, such big 

variations do not meet the international standards (St Louis, 2011) and could discard the concerned magnetic observatory. 

However, after solving the system for each components and applying transformation matrix to the variometer data, baseline 

computation gives more correct data. Finally, magnetic field vector can be reconstructed from the corrected baseline and 20 

transformed variometer values according to Eq. (2). 

 

A second LEMI-025 is installed in the variometer house of Dourbes observatory. This one is correctly setup so it could be 

used for a posteriori comparison. Figure 5 shows the difference between vector components built from “case study” 

variometer and reference variometer. Notice that both are separated by 10 meters but the observatory environment should 25 

ensure minimal difference. 
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5 Conclusion 

The baselines and absolute measurements are powerful tools for checking data quality and for highlighting possible gross 

errors. The present paper has demonstrated that even with a strong setup error, it is possible to recover good magnetic data 

meeting international standards. It also contributes to automatic installation and calibration of magnetic measurement 

systems. Future observatories deployments will be more and more complex with automatic dropped systems in unstable 5 

environments. Antarctic, seafloor or even Mars (Dehant et al., 2012) are the challenges of Tomorrow. They will require not 

only automatic instruments but also regular and automatic control. 
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Figure 1: Baseline example computed from conventional manual measurement (Dark blue) and automatic system (light blue).In 

the middle of 2013, a baseline jump corresponding to an instrumental effect occurred proving that regular absolute measurement 

are crucial.  

 5 

 

Figure 2: Blue: 𝑿𝟎 baseline computed from high frequency absolute measurements. Red: Variometer Y component from LEMI-

025. Because the variometer is not properly oriented, a strong correlation appears between 𝑿𝟎 and 𝜹𝒀.  
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Figure 3: LEMi-025 installed in Dourbes magnetic observatory. The red arrow indicates the True-North direction. The orange 

arrows highlight the bubble levels saturation. 

 

 5 

 

Figure 4: LEMi-025 baselines Blue: before processing. Red: after processing. 
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Figure 5: Variometer difference between reference variometer and “case study” variometer. The value are clearly within 1nT. 
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